Simulating Reservoir Operation Using a Recurrent Neural Network Algorithm
نویسندگان
چکیده
منابع مشابه
Simulating Biological Motion Perception Using a Recurrent Neural Network
People have the ability to perceive biological motion under conditions of severely limited information. The information is in the form of point-light displays of human walkers, where the display is presented as a smooth motion sequence. This phenomenon can be simulated with a recurrent artificial neural network. A feedback connection from the output of the hidden layer to the input of the hidde...
متن کاملOptimization of Dez dam reservoir operation using genetic algorithm
Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As...
متن کاملReservoir computing approaches to recurrent neural network training
Echo State Networks and Liquid State Machines introduced a new paradigm in artificial recurrent neural network (RNN) training, where an RNN (the reservoir) is generated randomly and only a readout is trained. The paradigm, becoming known as reservoir computing, greatly facilitated the practical application of RNNs and outperformed classical fully trained RNNs in many tasks. It has lately become...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملReservoir inflow forecasting using artificial neural network
Hydrologic forecasting plays an ever increasing role in water resource management, as engineers are required to make component forecasts of natural inflows to reservoirs for numerous purposes. Resulting forecast techniques vary with the system purpose, physical characteristics, and availability of data. As most hydrological parameters are subjected to the uncertainty, a proper forecasting metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water
سال: 2019
ISSN: 2073-4441
DOI: 10.3390/w11040865